Mixed finite elements for elasticity on quadrilateral meshes
نویسندگان
چکیده
منابع مشابه
Mixed finite elements for elasticity on quadrilateral meshes
We present stable mixed finite elements for planar linear elasticity on general quadrilateral meshes. The symmetry of the stress tensor is imposed weakly and so there are three primary variables, the stress tensor, the displacement vector field, and the scalar rotation. We develop and analyze a stable family of methods, indexed by an integer r ≥ 2 and with rate of convergence in the L2 norm of ...
متن کاملNew Quadrilateral Mixed Finite Elements
In this paper, we introduce a new family of mixed finite element spaces of higher order (k ≥ 1) on general quadrilateral grids. A typical element has two fewer degrees of freedom than the well-known RaviartThomas finite element RT[k], yet enjoys an optimal-order approximation for the velocity in L 2-norm. The order of approximation in the divergence norm is one less than the velocity, as is com...
متن کاملMixed finite elements for elasticity
There have been many efforts, dating back four decades, to develop stablemixed finite elements for the stress-displacement formulation of the plane elasticity system. This requires the development of a compatible pair of finite element spaces, one to discretize the space of symmetric tensors in which the stress field is sought, and one to discretize the space of vector fields in which the displ...
متن کاملRectangular Mixed Finite Elements for Elasticity
We present a family of stable rectangular mixed finite elements for plane elasticity. Each member of the family consists of a space of piecewise polynomials discretizing the space of symmetric tensor fields in which the stress field is sought, and another to discretize the space of vector fields in which the displacement is sought. These may be viewed as analogues in the case of rectangular mes...
متن کاملNonconforming Tetrahedral Mixed Finite Elements for Elasticity
This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Computational Mathematics
سال: 2014
ISSN: 1019-7168,1572-9044
DOI: 10.1007/s10444-014-9376-x